quiz8
In a class of 200:
因此,答案为:52
How many integers are there between 1 and 1000 which are divisible by 6 or 15 but not both?
因此,答案为:166(因为33被计算了两次,所以199+66-33*2)
Let S be a set of size n, and fix a constant k>1 (i.e k does not depend on n). Which of the following gives the best asymptotic upper bound for the number of subsets of S of size k?
集合不考虑顺序,因此只需要在n里选出k个元素,即 。
同时,由于k是常数,所以直接忽略。且:
因此,答案为:。
Suppose I place 2 red balls, 3 green balls, and 4 blue balls into a hat, and draw two balls without replacement.
What is the probability they are both blue?
第一个球是蓝球的概率是4/9,满足第一次的情况下出现第二个蓝球的概率是4-1/9-1=3/8
因此,答案为:1/6
How many ways are there of choosing an ordered sequence of three letters (with no replacements) from 'SYDNEY'?
计算三个字母的有序序列的总数,我们需要分四种情况来考虑:
第一种情况,我们要从"SDNE"中选择三个,并组成有序序列,共有:。
第二种情况,我们要从"SDNE"中选择两个,并和另一个Y组成有序序列,共有:。
第三种情况,我们要从"SDNE"中选择一个,和另外两个"Y"组成有序序列。两个Y构成插槽,因此实际上该字母能选择位置只有3个,共有:。
因此,答案为:72
How many sequences of 2n coin flips have exactly n heads and n tails?
我们只需要考虑,在这2n个硬币中,选择n个正面朝上即可,我们不需要考虑它的顺序或者别的东西。
因此,答案为:
How many ways are there of placing 6 indistinguishable balls into 3 distinguishable boxes so that each box contains at least 1 ball?
六个球是等价的,三个盒子不等价。我们可以先在每个盒子中都放一个球,把问题转化为:
现在有3个球,放入三个不同的盒子中,有几种放法?
有三种情况:
因此,答案为:10
Suppose I place 2 red balls, 3 green balls, and 4 blue balls into a hat, and draw two balls without replacement.
What is the probability that the second ball is blue, given that the first ball is blue?
感觉跟前面那题没区别,答案为3/8
本文作者:Jeff Wu
本文链接:
版权声明:本博客所有文章除特别声明外,均采用 BY-NC-SA 许可协议。转载请注明出处!