QUIZ 3
Consider the graph with:
{0,1}×{0,1}×{0,1}
What is the degree sequence of this graph?
Select one alternative:
- 1,1,1,1,1,1,1,1 - 0,0,2,2,2,2,0,0 - 0,4,4,0,0,00,0,0 - 0,0,0,8,0,0,0,0 - None of the above
首先这是一个无向图。
其次,这个顶点集的坐标是一个三阶向量,每一位都由0或1组成。因此,顶点有如下几种:
(0,0,0) (0,0,1) (0,1,0) (0,1,1) (1,0,0) (1,0,1) (1,1,0) (1,1,1)
现在,对相互之间位数差异位2的点互相连线以构成边,所以只需要考虑哪些点跟其相差有2即可。
但换句话说,这也可以考虑保留一位,另外两位都不同即可。而每一个坐标一共有三位,所以每个点都可以与另外三个点进行连线,换句话说每个点都有三个度。
因此,答案为:
3,3,3,3,3,3,3,3 None of the above
Which of the following graphs are isomorphic to this graph:
Select all that apply:
画图,设点,一点点推,找到矛盾边、矛盾点即可排除。
答案为:
Starting from Vertex 0, which of the following sequences of vertices could arise as a sequence of explored vertices when performing a breadth-first traversal (according to lectures)?
Select all that apply:
- 0,2,1,3,5,4,8,6,7 - 0,1,2,3,6,5,4,7,8 - 0,3,2,1,4,5,6,8,7 - 0,3,5,8,7,6,4,2,1 - 0,1,3,4,5,8,7,6,2 - 0,1,2,3,4,5,6,7,8
该图像的同构如图所示:
0 / | \ 3 - 2 - 1 / | | 4 - 5 6 | | 8 - 7
则根据广度优先算法,我们应当为每一层先进行遍历,再进行下一层。
答案为:
- 0,1,2,3,6,5,4,7,8 - 0,3,2,1,4,5,6,8,7 - 0,1,2,3,4,5,6,7,8
Starting from Vertex 0, which of the following sequences of vertices could arise as a sequence of explored vertices when performing a depth-first traversal (according to lectures)?
Select all that apply:
- 0,1,3,4,5,8,7,6,2 - 0,3,2,1,4,5,6,8,7 - 0,2,1,3,5,4,8,6,7 - 0,3,5,8,7,6,4,2,1 - 0,1,2,3,6,5,4,7,8 - 0,1,2,3,4,5,6,7,8
可以自己画图试验一下,一个一个试即可。注意:需要给每一个还未遍历但已经被父节点发现的点标注深度,并且一个点不能被重复标注深度。
答案为:
- 0,1,3,4,5,8,7,6,2 - 0,3,5,8,7,6,4,2,1
Which of the following properties does this graph have?
Select all that apply:
- Contains a cycle of length 10 - Bipartite - Planar - Hamiltonian path - Connected - Chromatic number 3 - Clique number 2 - Eulerian path
首先为图中的每个点标注序号,方便进行表示。
因此,答案为:
- Contains a cycle of length 10 - Bipartite - Planar - Connected - Clique number 2
Which of the following statements are true for any graph with n≥1 vertices and m≥0 edges?
Select all that apply:
- If m < n then the graph is acyclic - If m ≥ n-1 then the graph is connected - If m ≥ n then the graph contains a cycle - If m < n-1 then the graph is not connected
因此,答案为:
- If m ≥ n then the graph contains a cycle - If m < n-1 then the graph is not connected
Let D0, D1, D2, D3 be the degree sequence of a tree with n≥2 vertices (assume Dk = 0 for k≥4)
Which of the following must necessarily hold:
Select all that apply
- D1 is even - D3 ≥ D2 - D2 ≥ D3 - D1 = 2 + D3 - D0 = 0 - D1 ≥ 2
对于一棵有 n 个顶点的树,以下性质始终成立:
由于在大于等于4的情况下,Dk=0,我们可以认为没有度数大于等于4的节点。
o o o | | | o o o \ | / o
o o o | | | o o o \ | / o
o o o \ | / o
因此,答案为:
- D1 = 2 + D3 - D0 = 0 - D1 ≥ 2
Which of the following graphs have an Eulerian circuit?
Select all that apply
存在欧拉回路的条件:
因此,答案为:
- All regular graphs with 5 vertices and 10 edges - K_5 - K_{5,5,5}
Let G be a finite directed graph where every vertex has in-degree and out-degree at most 1.
True or false:
G has a vertex of out-degree 0 if and only if G has a vertex of in-degree 0.
在一个有限的有向图G中,如果每个顶点的入度和出度最多为1,这意味着每个顶点要么与一个其他顶点相连(作为其唯一的前驱或后继),要么完全不与任何顶点相连(入度和出度都为0)。
为了理解为什么这个陈述是真的,我们可以考虑以下情况:
如果G有一个出度为0的顶点,那么这意味着有一个顶点没有指向任何其他顶点的边。由于图是有限的,并且每个顶点的连接数是受限的(最多1个出度和1个入度),这意味着必须有至少一个顶点的入度为0,因为否则会形成一个封闭的环,使得每个顶点都有出度和入度,这与假设矛盾。
反过来,如果G有一个入度为0的顶点,这意味着有一个顶点没有任何从其他顶点指向它的边。考虑到图中顶点数量有限,以及每个顶点的连接数受限,这就意味着必须有至少一个顶点的出度为0,以防止形成一个完全封闭的环路。否则,如果每个顶点都有一个出度,那么每个顶点也必须有一个入度,以保持平衡,这会导致每个顶点既是某个环的一部分,又是该环的出发点,这与入度为0的假设矛盾。
因此,这个陈述展示了在这种类型的图中,出度为0的顶点的存在必然意味着有一个入度为0的顶点的存在,反之亦然。这是由于图的有限性和每个顶点入度及出度的限制共同决定的。
因此,答案为:
True
True or false:
If a graph has chromatic number at least 3, then it must contain a subdivision of K3
显然错误。一个环图如果有奇数个点,那么它的色数必然等于3,然而一个环图并不一定是 。
因此,答案为:
False
本文作者:Jeff Wu
本文链接:
版权声明:本博客所有文章除特别声明外,均采用 BY-NC-SA 许可协议。转载请注明出处!